PHYSICAL REVIEW E, VOLUME 63, 036130
Self-organized criticality and the self-organizing map
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The self-organizing mafSOM), a biologically inspired, learning algorithm from the field of artificial neural
networks, is presented as a self-organized crifi8®C model of the extremal dynamics family. The SOM’s
ability to converge to an ordered configuration, independent of the initial state, is known and has been
demonstrated, in the one-dimensional case. In this ordered configuration it is now indicated by analysis and
shown by simulation that the dynamics of the SOM are critical. By viewing the SOM as a SOC system,
alternative interpretations of learning, the organized configuration, and the formation of topograhic maps can
be made.
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I. INTRODUCTION such thatx,<x;, Vi. In the case of the one-dimensional
Bak-Sneppen modek,;— w4, Xy— w5, Xy 1— w3, Where

Self-organized criticalitf SOQ was originally proposed thew;[0,1) are uniformly distributed. This model has been
by Baket al.[1] as a general theory to explain the ubiquitousshown to self-organize and have spatial and temporal vari-
nature of “1/f’ noise and fractals in nonlinear dynamical @bles characterized by power laws. In this paper the self-
systems with many coupled degrees of freedom. While £r9anizing map(SOM) is presented as another member of
rigorous definition of when a system can be considered SO&€ extremal dynamics family. It is shown that the ordered
does not exist, it is generally accepted that the system mu§Pnfiguration of the one-dimensional SOM is critical, first by
have both spatial and temporal components, and when suffdicating through analysis that the activity of the lattice
jected to external fluctuations the system must organize itselfariables are characterized by a probability function that de-
into a critical state. Self-organized means it reaches the criti¢réases algebraically with distance, second by defining an
cal state independent of the initial state of the system. A €vent” and showing through analysis and simulation the
critical state, as defined in equilibrium thermodynamics, is€Vents are governed by power laws in both the spatial and
characterized by correlation functions that decrease algebri€mporal domains. Finally it is suggested that such an obser-
ically with distance, and hence are scale invariant. The exisy@tion may lead to a better understanding of one of the major
tence of such correlations are assumed when the statistic@PStacles to a complete analysis of the SOM; the meaning of
properties of the system can be described by simple powet" Organized configuration.

laws.
The original paradigm for SOC was the sand pile model, Il THE SELF-ORGANIZING MAP
now referred to as the Bak-Tang-WiesenféRII'W) model The SOM, a very widely used artificial neural network

[2]. The known set of SOC systems can be classified into onglgorithm[10], arose from attempts to model the formation
of two families[3]. The first, the stochastic dynamics family, of topology preserving mappings between certain sensory
includes the Olami, Feder, and Christeng&fC) model of  organs and the brain cortex. For example, when adjacent
earthquake$4], the lattice-gas mod¢b], and the forest-fire  sensory cells on the surface of the retina are stimulated, the
model [6]. The second, is the extremal dynamics family, resulting sensory signals arrive at adjacent neurons in the
whose dynamics are deterministic but set in a random envivisual cortex. It was realized that these neural connections
ronment, and include the growing interface mog&B] and  could not be defined genetically and in fact the neural con-
the Bak-Sneppen model of evolutid®]. What all these nections must be formed by an adaptive process when stimu-
models have in common is their basic structure, which contated. One of the early models of the formation of topology
sists of a regulad-dimensional lattice, and each lattice dite preserving mappings through the adaptivity of neural con-
has an associated dynamical variakle Members of the nections was by Willshaw and von der Malsbuid]. The
stochastic dynamics family depend on an external drive tiasic idea is, for a given input, a subset of neurons respond
increase the valygs) of the x; in some manner, which is better and have a higher activity. Their heightened activity
model specific. Eventually, at one lattice sifehe dynamic  strengthens the neural connections to these neufoms
variable x;=x., wherex; is a threshold value. When this Hebbs law[12]), which means they became even more sen-
happens, the external drive is switched off and the system isitive to the same input. There is also a neural interaction
allowed to relax to values below the threshold. This relax-component, where the neurons with maximum response also
ation is repeated until every lattice sithasx;<<X.. Such a increase the activity of their neighboring neurons and inhibit
chain of iterations is referred to as an avalanche. When ththe activity of neurons further away. This competition with
system is critical, the statistical propertiésg., size, dura- activation inhibition of other neurons, results in clusters of
tion) of the avalanches can be described by simple poweneighboring neurons that respond maximally to similar types
laws. In the extremal dynamics family, there is also a threshef input, and leads to the formation of topology preserving
olding, where the sit&k of initiation of activity is chosen maps. However, the simulated maps were not globally or-

1063-651X/2001/6()/03613016)/$15.00 63 036130-1 ©2001 The American Physical Society



JOHN A. FLANAGAN PHYSICAL REVIEW E 63 036130

whereX=(x;,X5, ... Xy)". In the SOM the convergence of

1 the neuron weights tB=D " UD " is also self-organizing in
the SOC sense, proofs of ordering in the SOM show that the
a) convergence is independent of the initial state of the neuron
0.5 b) weights[13-17.

In what follows it is shown that the SOM can be consid-
ered as a SOC system, by showing the dynamics of the neu-
0 ron weights exhibit both spatial and temporal correlations,

0 o5 1 1.5 characterized by power laws. In the next section analysis of
v the one-dimensional SOM, shows the existence of spatial

FIG. 1. Plot of two commonly used neighborhood functions in Correlations, which in turn leads to the definition of an
the SOM.(a) Rectangular neighborhooh) Gaussian type neigh- ‘“event.” Using these events, the presence of spatial and
borhood function. temporal correlations are demonstrated by simulation. Fol-

lowing this an argument is made as to how the observation
dered. By allowing only the single, maximally active neuronthat the SOM is SOC gives an insight into the organizing
to perform activation inhibition, Kohonen realized globally process.
ordered maps could be achieved. With this in mind he pro-
posed the much simplified SOM algorithih0]. In the one-
dimensional case the SOM consists of a latticé&afeurons Ill. SPATIAL AND TEMPORAL CORRELATIONS
(i.e., lattice pointsand to each neuron is assigned a neuron IN THE SELF-ORGANIZING MAP
weight (i.e., dynamic variablex; . The driving signal, or in . . . .
thegcase of tr)lle SOM, the sigr|1al to be Ieargne(?, is a random The °f9a"!'zed sta}t@ of the SOM is qr_|t|cal, as will l:_)e
numberw e [0,1], with probability density functiorf,, . The indicated using stralghtforward prqbablllty_ co_nS|derat|0ns.
first step in the algorithm is the competitive part where thel € dynamic variabley; to be considered is given by
neuronu closest to the input at timeis chosen as the “win- = N(Uis)|@—Xi[, which, from Eq.(2) is proportional to the
magnitude of the update of neuron weight It is now

ner,” formally defined as, ) ) )
shown that the variablg, is not independent of the value of
v(t)=argmifw(t) —x;(t)]|. (1) v,, and this dependence can vary proportional tef,1/De-
1<i=N tails of the derivation can be found in the appendix. In brief,

. . - . .. consider a given state of the weigiXs=D*, and examine
This function corresponds to determining the site of action iNyhat happens for a given winner neurenAs v is the win-
the extremal dynamics family. In this case the choice de-ner then from Eq.(1) it meanswe[x. ,x'], where x_
pends on both the dynamic variablggt) and the input = (X, 1+ %,)12, X' =(x, +1+%,)/2. Define the ratio vari-

?(;-)(.tl-gaETZ'[(S?E-(?)E%;IZ%?E; the(t) so that|w(t) abler; asri=y;/y,. The conditional probability density
! : ' functionf, (y|u;, ,X) of r; can be derived by first finding the

X (t+21)=x;(t) + a h(uj)[ o(t) —x;(t)], (2)  probability P[y;< yy,|u;, ,X] and differentiating the expres-

_ sion with respect toy [18]. This probability is given by the
where o € (0,1) and for present purposes is assumed cong;m of two terms as,

stant. The neighborhoda(u;,) is a decreasing function for
uj, €[0,1], with h(0)=1 andh(u;,)=0 for u;,=1, where

h(y,)

Ui, =|i —v(t)|/W, with 0O<W=N a constant integer. Typical PLYi<1yy,|ui, . X]= P 0= w,|u;, ,X]
neighborhood functions are shown in Fig. 1. Notg, is b
proportional to the lattice distance between netirand the + Pl o< wp|uj, , X],

winner neurorv (t). It is through the neighborhood function

that the spatial component of the model influences the dy- ) a N b
namics of the neuron weighss(t). Given the form of, the ~ With the constraint forP® thatx,<w=Xx, and for P* that
larger the distance between neurons on the lattice the small¥s <®@=<X, , the two variableso, ,wy, are defined as,

the effect they have on the update of each others neuron

weights. With successive inputs and iterating equatidns

and(2), it is found that the neuron weights reach an ordered . VX~ (Ui )X; - VX + (U)X

state, that is they self-organize. In SOC, self-organized, a vy—h(uj,) ’ b v+h(u;,)

means convergence independent of the initial conditions, in

the SOM it means the neuron weights converge to an orga-

nized configuration The termP? can only be nonzero ik, <w,<x; and the
term P® can only be nonzero ik, <wa<X, . In what fol-
lows it is assumed that the weights are in a configurakon
for which these two conditions hold. Differentiatifi®ywith
respect toy gives, . (y|u;,,X)=02 (w,)+0°f (wy),
D™ ={X:1>X;>Xy,>--->Xx>0}, where

or
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_h(uiv)(xv_xi)
[y—h(ui,)]*

b_ h(uiv)(xv_xi)
[y+h(u,)]?

a

3

To simplify the analysis assunfe, is uniformly distributed
on [0,1], which meansf, (y|u;, ,X)=©2+6". Consider a
neighborhood function, or a linear approximation to the
neighborhood about;,=0, of the formh(u;,)=1-pu;,,
where 6<p<1 andr;=1 (i.e.,, yj=Y,). Substituting these
values into the expression fdrri(y|uiU,X) and assuming
pu;, <1, gives®?%x 1/ui2v and ®° is constant. This implies
the probability thaty,=y, decreases inversely proportional
to the square distanag, . Based on this result it is possible
to define an event.

Define an eventi={s,s+1,... v—1u} relative to the
winning neuronuv, as the set of neurons that satisfy two
conditions. The first is that <y, 1<---<y,_1<Y,. The
second, is thas<v is the smallest value for which (1
—0)y,<y.<y,, 0<6#<1. The spatial extent of the event is
given byug, . In the case off, uniformly distributed with
h(u;,)=1-pu;,, the probability of the extent of the event
is given by integrating’, over the interva[1—6,1], which
results in,

P[(l_ a)yuSyS<yU|uSv !X]

a(l_pusv)(xv_xs)
(24 pug,)?— 0(2+ pug,)
(4)

For 6<pug,<1,Vs the probability of the extent of the
event, is proportional to mév.

_ 0(1_pusv)(xv_xs) n
(pUSv)Z—pUSva
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FIG. 3. Plot of log((fp) —log;o(P) the distribution of the ava-
lanche power for the SOM of Fig. 1. The slope of the straight line
is —2.101+0.02.

probability of these configurations occurring. Consider a
one-dimensional SOM witiN=3000, W=1800, «=0.9,

and 3x 10° iterations. A uniformly distributed input of0,1]

was used, as was a value 610 ° and a neighborhood
functionh(u;,)=1-pu;, , with p=10"2. As W= 1800, the
possible range of the spatial events is over three orders of
magnitude. Figure 2 shows a plot of the log-log distribution
f,  of the sizeug, of the eventsl. The slope of the approxi-

mating straight line is-1.916+0.006.

The analysis and simulations demonstrate spatial correla-
tions following power laws, but for the SOM to be consid-
ered as an SOC system it must also demonstrate temporal
correlations of its variables. This aspect is now analyzed by
simulation. Define the powd? dissipated during an event by
the sumP=%=,;_;V;, the sum of the updates of the neurons
involved in the event. The distribution of the event power
is shown in Fig. 3 for the SOM of the previous experiment.
The distribution is characterized by a power law with coef-

It should be noted that a spatial event in this contextficient 2.101-0.02. To show time correlations between dif-
simply implies spatial correlations between the dynamics oferent events, the time intervals between events are used.
the variables on the array. It is not an avalanche in terms ofonsider an event at tintewith powerP(t), and definel as

the “particle transport” phenomena of the BTW model, or is

the number of iterations for whicR(t+n)<P(t), VO<n

it the same as the spatial event of the Bak-Sneppen model &f T, and P(t+ T)>P(t). The distributionf{ of T is shown

evolution, where the distance on the array between consec
tive winners is used to show spatial correlations.

However this definition of a spatial event allows for easy
verification of Eq.(4) by numerical simulations. Note that
Eq. (4) in fact is a conditional probability for a configuration

in Fig. 4 for the same SOM parameters as before. The ap-
proximating straight line indicates a power-law exponent
of 1.010+0.02. This time correlation is associated with
what might be called a collective effect, other power-law
time distributions can be found at the level of the individual

X, the simulations also demonstrate that there is a nonzemynamic variables. Giverx;(t) and x;(t+n)=<x;(t), VO

sv
IS

09,40, )

[
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FIG. 2. Plot of logo(f, )—logio(us,), for N=3000, W
=1800, «=0.9, h(u;,) =1-pu;,, p=0.01, and uniformf,. The
slope of the straight line is-1.916+ 0.006.

1 2
1og, (M

FIG. 4. Plot of logg(ft) —10g:o(T), the distribution of the time
between avalanches of similar or greater magnitude for the SOM of
Fig. 1. The slope of the straight line is1.010+0.02.
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6 the input can be considered as a noise signal that drives the
SOM to its attractor, the ordered configuration. As a result
the ordering is independent of the input, as long as the input
4 is sufficiently diverse[15]. It is known that the organized
configuration of the weights is dependent on the support of
the input. However the SOC interpretation of the SOM im-
2 plies that the organized configuration is independent of the
probability distribution of the input. This raises questions
p 3 about learning in the SOM, as the support of the input obvi-
log, ,(T) ously influences the definition of the attractor, the attracting
properties of the attractor are defined by the algorithm and as
FIG. 5. Plot of logy(f)—log:o(T), the time distribution for such the learning is not based solely on the input. From the
values ofxysootaken for a SOM wittN= 5000, W= 3000, the same view of the SOC theory it is also interesting as the attractor
neighborhood and gain as for Fig. 1. The slope of the straight line i$s defined by the input. The organized configuration also
—1.741+0.03. means a preservation of topology between the input space
and the neuron weights, which has been found to play an
<n<T, andx;(t+T)>Xx,(t), then Fig. 5, shows the distribu- important part in information processing in several parts of
tion f1 of T for a SOM withN=5000, W= 3000, the neigh- the brain.
borhood and gain as above, aind 2500. The slope of the
approximating straight line is-1.741+0.03, indicating once
again a power-law distribution of the timés It seems thus
that the dynamics of the neuron weights in the SOM show The one-dimensional SOM has been presented as an al-
time correlations that can be characterized by power lawsggorithm that exhibits both spatial and temporal correlations
The implications of these results for the SOM are discussednd can be characterized by power laws. These correlations
in the next section. have been demonstrated by simulation, and partly by analy-
sis. The SOM can be characterized as an SOC system, and
more specifically as belonging to the extremal dynamics
family of SOC systems. This observation in itself is interest-
ing given that the SOM is a widely used learning algorithm

The dynamics of the one-dimensional SOM have beerrom the area of artifical neural networks.
shown to be characterized by power laws in the spatial and The formation of topology preserving maps in several ar-
temporal domain, and as such can be characterized as beifgS Of the brain is well documented and their formation has
self-organized critical, specifically belonging to the extremalb€en modeled by a self-organizing mechanism, which in-
dynamics family. While this observation in itself is interest- SPired the simplified SOM algorithm. One of the main prob-
ing, given that it is an example of a learning algorithm dis-!€ms in understanding the organizing abilities of the SOM, is
playing SOC, it may also prove useful in understanding self& definition of the organized configuration. By considering
organization in the SOM. the SOM as an SOC system, it is possible to interpret the

Many attempts have been made to define exactly what igrdering of the neuron weights as a dynamical system driven
meant by an organized configuration in the SOM. In theby noise(i.e., the input to the attractor of the systefne.,
one-dimensional case this is quite easyDais an absorbing the organized configurationThe definition of the organized
configuration. In the higher-dimensional case no such abconfiguration should follow from a characterization of the
sorbing configurations are known and the definition of andttractor of the dynamical system. This approach also has
organized configuration cannot be made in this way. Atimplications for what is meant by learning during the orga-
tempts have been made to make a general definition of afizing phase of the SOM algorithm. With the SOM it can be
organized configuration, using the notion of topology presersS€en that SOC can characterize, in a simple manner, a dy-
vation [19-21]. This notion of topology preservation is namical system performing the apparently very complicated
based on the minimization of some measure of a mappinépsk of learning.
between the input space and the neuron weight space. None
of these measures have proved useful in the analysis of the ACKNOWLEDGMENTS
SOM and its ordered configuration. However the realization
that the SOM can be considered as a SOC system provides This work was sponsored by the Academy of Finland. We
an alternative insight into the ordering phenomena. A SOgvould like to thank Professor T. Kohonen for his support.
system converges to its attractor independent of its initial
state, driven by noise. Hence if the SOM is considered as a APPENDIX
SOC system, the ordered configuration can be considered as
an attractor of the system. The attractor consists of a collec- To determine the spatial correlations between the updates
tion of metastable organized states. In this configuration thef the neuron weights, consider a given configuration of the
system is critical, exhibiting both spatial and temporal correneuron weightXe D, and one possible winning neuren
lations. The consequence of this view is that during orderingFor neurorv to be the winner themw e[x; ,x.' ] where,

log, ()

V. CONCLUSION

IV. THE ORGANIZED STATE AND SELF-ORGANIZED
CRITICAL MODEL
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_ Xu—1+xv

T
(A1)

+_XU+1+XU

v

To find a correlation between the valye of neuroni, at a
distanceu;, from v, the value ofy,, consider the value of

the ratio,

Yi
r=—.

Yo
The conditional probability density functiofy(y|u;, ,X) of

(A2)

r is derived. The technique used is to find an expression for

the probabilityP,

PLyi/y,<7luj, X] (A3)

and differentiate it with respect ta To simplify the analysis

it is further assumed that<v, which implies thatx;<x,
<x, asXeD™. Substituting the expressions fgr,y, into
the previous expression and notihgu,,)=1, o—x;>0,
results in,

Plh(u;,) (@ —Xx)<7y|o—X,||u;, ,X]. (Ad)
This expression can be rewritten as,
PLh(Ui,) (0 =Xx) < y(0—=%,)|Uj, XX, < 0=<X,]
+P[h(u;,)(@—X;)
< y(X,— 0)|U;, , X,X, S0=X,].
(A5)
Rearranging the expressions gives,

yxu_h(uiu)xi +
0= W|Uiv XX, S 0sX,
7Xv+ h(uiv)xi

7+ h(uiu)

+P|os [Uuiy , X, X, Sw<X,

(AB)

The first term is given by

J & fo(p)dg, (A7)

= 'yxv_h(uiv)xi /7_ h(uiv)

PHYSICAL REVIEW E 63 036130

and can only be nonzero fif,

yxv_h(uiu)xi +
Xy = W<XU . (A8)

The first inequality is always true as<x, , the second in-
equality holds for arX for which,

h(u;,) (X, = X) < (X, —X,)- (A9)
The second term of EGA6) is given by,
X, T h(uj,)x; /y+h(u;,)
J _ fo(P)de, (A10)
=X,
and can only be nonzero if,
X, T h(Uj,)X;
_<7v (Uip) i_ (A11)

X \—\X .
C yth(uy) 0

The second inequality always holds truexasx,, , the first
inequality holds for any for which,

h(ui, ) (X, =X)=<y(X, =X, ). (A12)
An expression forf, can be obtained by differentiating the

two expressions in EqgA7) and (A10) and summing to
give,

fr(ylui, X)=FR(ou, X))+ 20y, X),  (A13)
where,
a h(uiv)(xv_xi) (')’Xv_h(Uiv)Xi)
f o X)=
(7t X0 [y—h(u,)1? “\ y=h(u,)

h(Uiv)(X:—_Xi)g'y(X:_xl}), (A14)

and is 0 otherwiset®(y|u;, ,X) is given by

_h(uiv)(xv_xi)
[7+ h(uiv)]z

h(uiv)(xyi_xi)g F),(XU_X;)I

f2(ylupy , X)

w

7Xv+ h(uiv)xi)
')’+ h(uiv)

(A15)

and is 0 otherwise.
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