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Self-organized criticality and the self-organizing map

John A. Flanagan
Neural Networks Research Center, Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT, Finland

~Received 16 October 2000; published 27 February 2001!

The self-organizing map~SOM!, a biologically inspired, learning algorithm from the field of artificial neural
networks, is presented as a self-organized critical~SOC! model of the extremal dynamics family. The SOM’s
ability to converge to an ordered configuration, independent of the initial state, is known and has been
demonstrated, in the one-dimensional case. In this ordered configuration it is now indicated by analysis and
shown by simulation that the dynamics of the SOM are critical. By viewing the SOM as a SOC system,
alternative interpretations of learning, the organized configuration, and the formation of topograhic maps can
be made.
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I. INTRODUCTION

Self-organized criticality~SOC! was originally proposed
by Baket al. @1# as a general theory to explain the ubiquito
nature of ‘‘1/f’’ noise and fractals in nonlinear dynamic
systems with many coupled degrees of freedom. Whil
rigorous definition of when a system can be considered S
does not exist, it is generally accepted that the system m
have both spatial and temporal components, and when
jected to external fluctuations the system must organize it
into a critical state. Self-organized means it reaches the c
cal state independent of the initial state of the system
critical state, as defined in equilibrium thermodynamics,
characterized by correlation functions that decrease alge
ically with distance, and hence are scale invariant. The e
tence of such correlations are assumed when the statis
properties of the system can be described by simple po
laws.

The original paradigm for SOC was the sand pile mod
now referred to as the Bak-Tang-Wiesenfeld~BTW! model
@2#. The known set of SOC systems can be classified into
of two families@3#. The first, the stochastic dynamics famil
includes the Olami, Feder, and Christensen~OFC! model of
earthquakes@4#, the lattice-gas model@5#, and the forest-fire
model @6#. The second, is the extremal dynamics fami
whose dynamics are deterministic but set in a random e
ronment, and include the growing interface model@7,8# and
the Bak-Sneppen model of evolution@9#. What all these
models have in common is their basic structure, which c
sists of a regulard-dimensional lattice, and each lattice sitei
has an associated dynamical variablexi . Members of the
stochastic dynamics family depend on an external drive
increase the value~s! of the xi in some manner, which is
model specific. Eventually, at one lattice sitei, the dynamic
variable xi>xc , wherexc is a threshold value. When thi
happens, the external drive is switched off and the syste
allowed to relax to values below the threshold. This rela
ation is repeated until every lattice sitei hasxi,xc . Such a
chain of iterations is referred to as an avalanche. When
system is critical, the statistical properties~e.g., size, dura-
tion! of the avalanches can be described by simple po
laws. In the extremal dynamics family, there is also a thre
olding, where the sitek of initiation of activity is chosen
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such thatxk,xi , ; i . In the case of the one-dimension
Bak-Sneppen model,xk21→v1 , xk→v2 , xk11→v3, where
thev iP@0,1) are uniformly distributed. This model has be
shown to self-organize and have spatial and temporal v
ables characterized by power laws. In this paper the s
organizing map~SOM! is presented as another member
the extremal dynamics family. It is shown that the order
configuration of the one-dimensional SOM is critical, first b
indicating through analysis that the activity of the latti
variables are characterized by a probability function that
creases algebraically with distance, second by defining
‘‘event’’ and showing through analysis and simulation t
events are governed by power laws in both the spatial
temporal domains. Finally it is suggested that such an ob
vation may lead to a better understanding of one of the m
obstacles to a complete analysis of the SOM; the meanin
an organized configuration.

II. THE SELF-ORGANIZING MAP

The SOM, a very widely used artificial neural netwo
algorithm @10#, arose from attempts to model the formatio
of topology preserving mappings between certain sens
organs and the brain cortex. For example, when adjac
sensory cells on the surface of the retina are stimulated,
resulting sensory signals arrive at adjacent neurons in
visual cortex. It was realized that these neural connecti
could not be defined genetically and in fact the neural c
nections must be formed by an adaptive process when st
lated. One of the early models of the formation of topolo
preserving mappings through the adaptivity of neural c
nections was by Willshaw and von der Malsburg@11#. The
basic idea is, for a given input, a subset of neurons resp
better and have a higher activity. Their heightened activ
strengthens the neural connections to these neurons~i.e.,
Hebbs law@12#!, which means they became even more s
sitive to the same input. There is also a neural interact
component, where the neurons with maximum response
increase the activity of their neighboring neurons and inh
the activity of neurons further away. This competition wi
activation inhibition of other neurons, results in clusters
neighboring neurons that respond maximally to similar typ
of input, and leads to the formation of topology preservi
maps. However, the simulated maps were not globally
©2001 The American Physical Society30-1
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dered. By allowing only the single, maximally active neur
to perform activation inhibition, Kohonen realized global
ordered maps could be achieved. With this in mind he p
posed the much simplified SOM algorithm@10#. In the one-
dimensional case the SOM consists of a lattice ofN neurons
~i.e., lattice points! and to each neuron is assigned a neu
weight ~i.e., dynamic variable! xi . The driving signal, or in
the case of the SOM, the signal to be learned, is a rand
numbervP@0,1#, with probability density functionf v . The
first step in the algorithm is the competitive part where
neuronv closest to the input at timet is chosen as the ‘‘win-
ner,’’ formally defined as,

v~ t !5arg min
1< i<N

uv~ t !2xi~ t !u. ~1!

This function corresponds to determining the site of action
the extremal dynamics family. In this case the choice
pends on both the dynamic variablesxi(t) and the input
v(t). The next step is to change thexi(t) so that uv(t)
2xi(t11)u,uv(t)2xi(t)u by letting,

xi~ t11!5xi~ t !1a h~uiv!@v~ t !2xi~ t !#, ~2!

where aP(0,1) and for present purposes is assumed c
stant. The neighborhoodh(uiv) is a decreasing function fo
uivP@0,1#, with h(0)51 andh(uiv)50 for uiv>1, where
uiv5u i 2v(t)u/W, with 0<W<N a constant integer. Typica
neighborhood functions are shown in Fig. 1. Note,uiv is
proportional to the lattice distance between neuroni and the
winner neuronv(t). It is through the neighborhood functio
that the spatial component of the model influences the
namics of the neuron weightsxi(t). Given the form ofh, the
larger the distance between neurons on the lattice the sm
the effect they have on the update of each others neu
weights. With successive inputs and iterating equations~1!
and~2!, it is found that the neuron weights reach an orde
state, that is they self-organize. In SOC, self-organiz
means convergence independent of the initial conditions
the SOM it means the neuron weights converge to an o
nized configuration

D15$X:0,x1,x2,•••,xN,1%

or

D25$X:1.x1.x2.•••.xN.0%,

FIG. 1. Plot of two commonly used neighborhood functions
the SOM.~a! Rectangular neighborhood~b! Gaussian type neigh
borhood function.
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whereX5(x1 ,x2 , . . . ,xN)T. In the SOM the convergence o
the neuron weights toD5D1øD2 is also self-organizing in
the SOC sense, proofs of ordering in the SOM show that
convergence is independent of the initial state of the neu
weights@13–17#.

In what follows it is shown that the SOM can be consi
ered as a SOC system, by showing the dynamics of the n
ron weights exhibit both spatial and temporal correlatio
characterized by power laws. In the next section analysis
the one-dimensional SOM, shows the existence of spa
correlations, which in turn leads to the definition of a
‘‘event.’’ Using these events, the presence of spatial a
temporal correlations are demonstrated by simulation. F
lowing this an argument is made as to how the observa
that the SOM is SOC gives an insight into the organizi
process.

III. SPATIAL AND TEMPORAL CORRELATIONS
IN THE SELF-ORGANIZING MAP

The organized stateD of the SOM is critical, as will be
indicated using straightforward probability consideration
The dynamic variableyi to be considered is given by,yi
5h(uiv)uv2xi u, which, from Eq.~2! is proportional to the
magnitude of the update of neuron weightxi . It is now
shown that the variableyi is not independent of the value o
yv , and this dependence can vary proportional to 1/uiv

2 . De-
tails of the derivation can be found in the appendix. In bri
consider a given state of the weightsXPD1, and examine
what happens for a given winner neuronv. As v is the win-
ner then from Eq.~1! it means vP@xv

2 ,xv
1#, where xv

2

5(xv211xv)/2, xv
15(xv111xv)/2. Define the ratio vari-

able r i as r i5yi /yv . The conditional probability density
function f r i

(guuiv ,X) of r i can be derived by first finding the

probabilityP@yi<gyvuuiv ,X# and differentiating the expres
sion with respect tog @18#. This probability is given by the
sum of two terms as,

P@yi<gyvuuiv ,X#5Pa@v>vauuiv ,X#

1Pb@v<vbuuiv ,X#,

with the constraint forPa that xv<v<xv
1 and for Pb that

xv
2<v<xv , the two variablesva ,vb are defined as,

va5
gxv2h~uiv!xi

g2h~uiv!
, vb5

gxv1h~uiv!xi

g1h~uiv!
.

The termPa can only be nonzero ifxv<va,xv
1 and the

term Pb can only be nonzero ifxv<va,xv
1 . In what fol-

lows it is assumed that the weights are in a configuratioX
for which these two conditions hold. DifferentiatingP with
respect tog gives, f r i

(guuiv ,X)5Qaf v(va)1Qbf v(vb),
where
0-2
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Qa5
h~uiv!~xv2xi !

@g2h~uiv!#2
, Qb5

h~uiv!~xv2xi !

@g1h~uiv!#2
. ~3!

To simplify the analysis assumef v is uniformly distributed
on @0,1#, which meansf r i

(guuiv ,X)5Qa1Qb. Consider a
neighborhood function, or a linear approximation to t
neighborhood aboutuiv50, of the formh(uiv)512ruiv ,
where 0,r,1 and r i51 ~i.e., yi5yv). Substituting these
values into the expression forf r i

(guuiv ,X) and assuming

ruiv,1, givesQa}1/uiv
2 and Qb is constant. This implies

the probability thatyi5yv decreases inversely proportion
to the square distanceuiv . Based on this result it is possibl
to define an event.

Define an eventJ5$s,s11, . . . ,v21,v% relative to the
winning neuronv, as the set of neurons that satisfy tw
conditions. The first is thatys,ys11,•••,yv21,yv . The
second, is thats,v is the smallest value for which (1
2u)yv<ys,yv , 0,u,1. The spatial extent of the event
given by usv . In the case off v uniformly distributed with
h(uiv)512ruiv , the probability of the extent of the even
is given by integratingf r s

over the interval@12u,1#, which
results in,

P@~12u!yv<ys,yvuusv ,X#

5
u~12rusv!~xv2xs!

~rusv!22rusvu
1

u~12rusv!~xv2xs!

~21rusv!22u~21rusv!
.

~4!

For u!rusv,1,;s the probability of the extent of the
event, is proportional to 1/usv

2 .
It should be noted that a spatial event in this conte

simply implies spatial correlations between the dynamics
the variables on the array. It is not an avalanche in term
the ‘‘particle transport’’ phenomena of the BTW model, or
it the same as the spatial event of the Bak-Sneppen mod
evolution, where the distance on the array between cons
tive winners is used to show spatial correlations.

However this definition of a spatial event allows for ea
verification of Eq.~4! by numerical simulations. Note tha
Eq. ~4! in fact is a conditional probability for a configuratio
X, the simulations also demonstrate that there is a non

FIG. 2. Plot of log10( f usv
)2 log10(usv), for N53000, W

51800, a50.9, h(uiv)512ruiv , r50.01, and uniformf v . The
slope of the straight line is21.91660.006.
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probability of these configurations occurring. Consider
one-dimensional SOM withN53000, W51800, a50.9,
and 33108 iterations. A uniformly distributed input on@0,1#
was used, as was a value ofu51026 and a neighborhood
function h(uiv)512ruiv , with r51022. As W51800, the
possible range of the spatial events is over three order
magnitude. Figure 2 shows a plot of the log-log distributi
f usv

of the sizeusv of the eventsJ. The slope of the approxi-
mating straight line is21.91660.006.

The analysis and simulations demonstrate spatial corr
tions following power laws, but for the SOM to be consi
ered as an SOC system it must also demonstrate temp
correlations of its variables. This aspect is now analyzed
simulation. Define the powerP dissipated during an event b
the sum,P5( i PJ yi , the sum of the updates of the neuro
involved in the event. The distribution of the event powerP
is shown in Fig. 3 for the SOM of the previous experime
The distribution is characterized by a power law with co
ficient 2.10160.02. To show time correlations between d
ferent events, the time intervals between events are u
Consider an event at timet with powerP(t), and defineT as
the number of iterations for whichP(t1n)<P(t), ;0,n
,T, andP(t1T).P(t). The distributionf T of T is shown
in Fig. 4 for the same SOM parameters as before. The
proximating straight line indicates a power-law expone
of 1.01060.02. This time correlation is associated wi
what might be called a collective effect, other power-la
time distributions can be found at the level of the individu
dynamic variables. Givenxi(t) and xi(t1n)<xi(t), ;0

FIG. 3. Plot of log10( f P)2 log10(P) the distribution of the ava-
lanche power for the SOM of Fig. 1. The slope of the straight l
is 22.10160.02.

FIG. 4. Plot of log10( f T)2 log10(T), the distribution of the time
between avalanches of similar or greater magnitude for the SOM
Fig. 1. The slope of the straight line is21.01060.02.
0-3
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JOHN A. FLANAGAN PHYSICAL REVIEW E 63 036130
,n,T, andxi(t1T).xi(t), then Fig. 5, shows the distribu
tion f T of T for a SOM withN55000,W53000, the neigh-
borhood and gain as above, andi 52500. The slope of the
approximating straight line is21.74160.03, indicating once
again a power-law distribution of the timesT. It seems thus
that the dynamics of the neuron weights in the SOM sh
time correlations that can be characterized by power la
The implications of these results for the SOM are discus
in the next section.

IV. THE ORGANIZED STATE AND SELF-ORGANIZED
CRITICAL MODEL

The dynamics of the one-dimensional SOM have be
shown to be characterized by power laws in the spatial
temporal domain, and as such can be characterized as b
self-organized critical, specifically belonging to the extrem
dynamics family. While this observation in itself is interes
ing, given that it is an example of a learning algorithm d
playing SOC, it may also prove useful in understanding s
organization in the SOM.

Many attempts have been made to define exactly wha
meant by an organized configuration in the SOM. In t
one-dimensional case this is quite easy asD is an absorbing
configuration. In the higher-dimensional case no such
sorbing configurations are known and the definition of
organized configuration cannot be made in this way.
tempts have been made to make a general definition o
organized configuration, using the notion of topology pres
vation @19–21#. This notion of topology preservation i
based on the minimization of some measure of a mapp
between the input space and the neuron weight space. N
of these measures have proved useful in the analysis o
SOM and its ordered configuration. However the realizat
that the SOM can be considered as a SOC system prov
an alternative insight into the ordering phenomena. A S
system converges to its attractor independent of its in
state, driven by noise. Hence if the SOM is considered a
SOC system, the ordered configuration can be considere
an attractor of the system. The attractor consists of a col
tion of metastable organized states. In this configuration
system is critical, exhibiting both spatial and temporal cor
lations. The consequence of this view is that during order

FIG. 5. Plot of log10( f T)2 log10(T), the time distribution for
values ofx2500 taken for a SOM withN55000,W53000, the same
neighborhood and gain as for Fig. 1. The slope of the straight lin
21.74160.03.
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the input can be considered as a noise signal that drives
SOM to its attractor, the ordered configuration. As a res
the ordering is independent of the input, as long as the in
is sufficiently diverse@15#. It is known that the organized
configuration of the weights is dependent on the suppor
the input. However the SOC interpretation of the SOM im
plies that the organized configuration is independent of
probability distribution of the input. This raises questio
about learning in the SOM, as the support of the input ob
ously influences the definition of the attractor, the attract
properties of the attractor are defined by the algorithm and
such the learning is not based solely on the input. From
view of the SOC theory it is also interesting as the attrac
is defined by the input. The organized configuration a
means a preservation of topology between the input sp
and the neuron weights, which has been found to play
important part in information processing in several parts
the brain.

V. CONCLUSION

The one-dimensional SOM has been presented as a
gorithm that exhibits both spatial and temporal correlatio
and can be characterized by power laws. These correlat
have been demonstrated by simulation, and partly by an
sis. The SOM can be characterized as an SOC system,
more specifically as belonging to the extremal dynam
family of SOC systems. This observation in itself is intere
ing given that the SOM is a widely used learning algorith
from the area of artifical neural networks.

The formation of topology preserving maps in several
eas of the brain is well documented and their formation
been modeled by a self-organizing mechanism, which
spired the simplified SOM algorithm. One of the main pro
lems in understanding the organizing abilities of the SOM
a definition of the organized configuration. By consideri
the SOM as an SOC system, it is possible to interpret
ordering of the neuron weights as a dynamical system dri
by noise~i.e., the input! to the attractor of the system~i.e.,
the organized configuration!. The definition of the organized
configuration should follow from a characterization of th
attractor of the dynamical system. This approach also
implications for what is meant by learning during the org
nizing phase of the SOM algorithm. With the SOM it can
seen that SOC can characterize, in a simple manner, a
namical system performing the apparently very complica
task of learning.
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APPENDIX

To determine the spatial correlations between the upd
of the neuron weights, consider a given configuration of
neuron weightsXPD1, and one possible winning neuronv.
For neuronv to be the winner thenvP@xv

2 ,xv
1# where,

is
0-4
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xv
25

xv211xv

2
,

~A1!

xv
15

xv111xv

2
.

To find a correlation between the valueyi of neuroni, at a
distanceuiv from v, the value ofyv , consider the value o
the ratio,

r 5
yi

yv
. ~A2!

The conditional probability density functionf r(guuiv ,X) of
r is derived. The technique used is to find an expression
the probabilityP,

P@yi /yv<guuiv ,X# ~A3!

and differentiate it with respect tog. To simplify the analysis
it is further assumed thati ,v, which implies thatxi,xv

2

,xv as XPD1. Substituting the expressions foryi ,yv into
the previous expression and notingh(uvv)51, v2xi.0,
results in,

P†h~uiv!~v2xi !<guv2xvuzuiv ,X‡. ~A4!

This expression can be rewritten as,

P@h~uiv!~v2xi !<g~v2xv!uuiv ,X,xv<v<xv
1#

1P@h~uiv!~v2xi !

<g~xv2v!uuiv ,X,xv
2<v<xv#.

~A5!

Rearranging the expressions gives,

PFv>
gxv2h~uiv!xi

g2h~uiv!
uuiv ,X,xv<v<xv

1G
1PFv<

gxv1h~uiv!xi

g1h~uiv!
uuiv ,X,xv

2<v<xvG .
~A6!

The first term is given by

E
f5gxv2h(uiv)xi /g2h(uiv)

xv
1

f v~f!df, ~A7!
03613
or

and can only be nonzero if,

xv<
gxv2h~uiv!xi

g2h~uiv!
,xv

1 . ~A8!

The first inequality is always true asxi,xv , the second in-
equality holds for anX for which,

h~uiv!~xv
12xi !,g~xv

12xv!. ~A9!

The second term of Eq.~A6! is given by,

E
f5xv

2

gxv1h(uiv)xi /g1h(uiv)

f v~f!df, ~A10!

and can only be nonzero if,

xv
2<

gxv1h~uiv!xi

g1h~uiv!
<xv . ~A11!

The second inequality always holds true asxi<xv , the first
inequality holds for anyX for which,

h~uiv!~xv
22xi !<g~xv2xv

2!. ~A12!

An expression forf r can be obtained by differentiating th
two expressions in Eqs.~A7! and ~A10! and summing to
give,

f r~guuiv ,X!5 f r
a~guuiv ,X!1 f r

b~guuiv ,X!, ~A13!

where,

f r
a~guuiv ,X!5

h~uiv!~xv2xi !

@g2h~uiv!#2
f vS gxv2h~uiv!xi

g2h~uiv! D
h~uiv!~xv

12xi !<g~xv
12xv!, ~A14!

and is 0 otherwise.f r
b(guuiv ,X) is given by

f r
b~guuiv ,X!5

h~uiv!~xv2xi !

@g1h~uiv!#2
f vS gxv1h~uiv!xi

g1h~uiv! D
h~uiv!~xv

22xi !<g~xv2xv
2!, ~A15!

and is 0 otherwise.
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